A generating function for nonstandard orthogonal polynomials involving differences: the Meixner case

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exceptional Meixner and Laguerre orthogonal polynomials

Using Casorati determinants of Meixner polynomials (m n )n , we construct for each pair F = (F1, F2) of finite sets of positive integers a sequence of polynomials ma,c;F n , n ∈ σF , which are eigenfunctions of a second order difference operator, where σF is certain infinite set of nonnegative integers, σF N. When c and F satisfy a suitable admissibility condition, we prove that the polynomials...

متن کامل

Zero Location for Nonstandard Orthogonal Polynomials

A method to locate the zeros of orthogonal polynomials with respect to non-standard inner products is discussed and applied to Sobolev orthogonal polyno-mials and polynomials satisfying higher-order recurrence relations.

متن کامل

A generating function for Laguerre-Sobolev orthogonal polynomials

Let fSng denote the sequence of polynomials orthogonal with respect to the Sobolev inner product

متن کامل

Orthogonal Polynomials with a Resolvent-type Generating Function

ABSTRACT. The subject of this paper are polynomials in multiple non-commuting variables. For polynomials of this type orthogonal with respect to a state, we prove a Favardtype recursion relation. On the other hand, free Sheffer polynomials are a polynomial family in non-commuting variables with a resolvent-type generating function. Among such families, we describe the ones that are orthogonal. ...

متن کامل

Expansion of the Riemann Ξ function in Meixner - Pollaczek polynomials ∗

In this article we study in detail the expansion of the Riemann Ξ function in MeixnerPollaczek polynomials. We obtain explicit formulas, recurrence relation and asymptotic expansion for the coefficients and investigate the zeros of the partial sums. ∗To appear in the Canadian Mathematical Bulletin †Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Ramanujan Journal

سال: 2011

ISSN: 1382-4090,1572-9303

DOI: 10.1007/s11139-010-9254-1